Page 152 - Acrobat J Trad-21-3-2566
P. 152
J Thai Trad Alt Med Vol. 21 No. 3 Sep-Dec 2023 635
2019;11(8):1162-71. https://doi.org/10.1002/dta.2604. Care Companion CNS Disord. 2013;15(2):PCC.12r01412.
28. Rees TM, Brimijoin S. The role of acetylcholinesterase https://doi.org/10.4088/PCC.12r01412.
in the pathogenesis of Alzheimer’s disease. Drugs 32. Li Q, Yang H, Chen Y, Sun H. Recent progress in the iden-
Today (Barc). 2003;39(1):75-83. https://doi.org/ 10.1358/ tification of selective butyrylcholinesterase inhibitors for
dot.2003.39.1.740206. Alzheimer’s disease. Eur J Med Chem. 2017;132:294-309.
29. Purwayantie S, Fadly D, Sholahuddin, Saputri NE, Wi- https://doi.org/10.1016/j.ejmech.2017.03.062.
janarti S. Antioxidant activity from multiple extraction 33. Johnston PS, Lebovitz HE, Coniff RF, Simonson DC,
of Kratom leaf (Mitragyna speciosa) without veins with Raskin P, Munera CL. Advantages of alpha-glucosidase
sonicator-type bath. J Health Nutr Res. 2022;1(3):178-84. inhibition as monotherapy in elderly type 2 diabetic
30. Darvesh S. Butyrylcholinesterase as a diagnostic and patients. J Clin Endocrinol Metab. 1998;83(5):1515-22.
therapeutic target for Alzheimer’s disease. Curr Al- 34. Leong Bin Abdullah MFI, Singh D. The adverse car-
zheimer Res. 2016;13(10):1173-7. https://doi.org/10.217 diovascular effects and cardiotoxicity of Kratom (Mi-
4/1567205013666160404120542 tragyna speciosa Korth.): A comprehensive review. Front
31. Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somo- Pharmacol. 2021;12:726003. https://doi.org/10.3389/
gyi M. A review of butyrylcholinesterase as a therapeutic fphar.2021.726003.
target in the treatment of Alzheimer’s disease. Prim